

Journal of Organometallic Chemistry 626 (2001) 192-198

www.elsevier.nl/locate/jorganchem

Reactions of metal-metal triply bonded complexes $[(\eta^5-RC_5H_4)_2M_2(CO)_4]$ (M = Mo, W) with diphenyl ditelluride. Crystal structures of $[(\eta^5-MeC_5H_4)Mo_2(CO)_4(\mu-TePh)_3]$ and $[(\eta^5-EtO_2CC_5H_4)_2W_2(CO)_4(\mu-TePh)_2]$

Li-Cheng Song ^{a,*}, Yao-Cheng Shi ^a, Qing-Mei Hu ^a, Yu Chen ^a, Jie Sun ^b

^a Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

^b Laboratory of Organometallic Chemistry at Shanghai Institute of Organic Chemistry, Shanghai 200032, People's Republic of China

Received 20 November 2000; received in revised form 15 January 2001; accepted 19 January 2001

Abstract

Reactions of triply bonded complexes $[(\eta^5-RC_5H_4)_2M_2(CO)_4]$ with Ph₂Te₂ in solution and solid state were investigated. While $[(\eta^5-RC_5H_4)_2M_2(CO)_4]$ (M = Mo, R = H, Me_3Si, MeCO; M = W, R = MeCO, MeO_2C, EtO_2C) reacted with Ph_2Te_2 in toluene at reflux to give a series of doubly bridged complexes $[(\eta^5-RC_5H_4)_2M_2(CO)_4(\mu-TePh)_2]$ (1, M = Mo, R = H; 2, Mo, Me_3Si; 3, Mo, MeCO; 4, W, MeCO; 5, W, MeO_2C; 6, W, EtO_2C), the reaction of $[(\eta^5-MeC_5H_4)_2Mo_2(CO)_4]$ with Ph₂Te₂ under the same conditions produced not only the corresponding doubly bridged complex $[(\eta^5-MeC_5H_4)_2Mo_2(CO)_4(\mu-TePh)_2]$ (7) but also the unexpected triply bridged complex $[(\eta^5-MeC_5H_4)Mo_2(CO)_4(\mu-TePh)_3]$ (8). For these bridged dinuclear complexes structural characterization and conformational analysis were carried out, while the crystal structures of 6 and 8, representing the two types of the structures of complexes 1–8, were successfully determined by single crystal X-ray diffraction techniques. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Ph2Te2; Metal-metal triple bond; Mo2Te2 complex; W2Te2 complex; Mo2Te3 complex; Crystal structure

1. Introduction

It is well known that reactions of Group 6 metalmetal triply bonded complexes $[(\eta^5-RC_5H_4)_2M_2(CO)_4]$ $(M = Mo, W; \eta^5-RC_5H_4$ is the parent or a substituted cyclopenta-dienyl ligand) have been extensively studied and widely used in the synthesis of a variety of transition metal complexes, particularly organometallic clusters [1–6]. However, among the reactions studied so far only a few are reactions of Mo=Mo triply bonded complexes $[(\eta^5-RC_5H_4)_2Mo_2(CO)_4]$ with Ph₂Te₂ [7,8] and not one is a reaction of a W=W triply bonded complex $[(\eta^5-RC_5H_4)_2W_2(CO)_4]$ with Ph₂Te₂. So, we initiated a systematic study on reactions of M=M triply bonded complexes $[(\eta^5-RC_5H_4)_2M_2(CO)_4]$ (M = Mo, W) with Ph₂Te₂, in order to know the possible influences of the substituents R and metals M upon the reactions and to synthesize the two interesting μ -PhTe bridged transition metal compounds, in particular the new type of more μ -PhTe bridged dinuclear complexes.

0022-328X/01/\$ - see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0022-328X(01)00695-7

^{*} Corresponding author. Tel.: + 86-22-23502562; fax: + 86-22-23504853.

E-mail address: lcsong@public.tpt.tj.cn (L.-C. Song).

2. Results and discussion

2.1. Reactions of $[(\eta^5 - RC_5H_4)_2M_2(CO)_4]$ (M = Mo, W)with Ph_2Te_2 . Synthesis and characterization of 1-8

We found that an equimolar amount of $[(\eta^5-RC_5H_4)_2M_2(CO)_4]$ (M = Mo, W; R = H, Me_3Si, MeCO, MeO_2C, EtO_2C) reacted with Ph_2Te_2 in refluxing toluene for 6 h, independent of the substituents R and the metals Mo/W, to give a series of the two μ -PhTe bridged dinuclear type of complexes 1–6 in 68–86% yield (Scheme 1).

However, in one case we did find the influence of the substituent R upon the type of reaction products: when an equimolar quantity of $[(\eta^5-RC_5H_4)_2Mo_2(CO)_4]$ (R = Me) reacted with Ph₂Te₂ under the same conditions as mentioned above, not only was the corresponding two μ -PhTe bridged dimolybdenum complex 7 produced, but also the unprecedented type of three μ -PhTe bridged dimolybdenum complex 8, in a combined yield of 56% (Scheme 2).

It is worth noting that while product 1 was previously prepared over a much longer time (4 days) in a lower yield (50%) [7a], products 2-8 are all new and have been characterized by elemental analysis, IR and ¹H-NMR spectroscopic methods. The IR spectra of 2-8 showed several absorption bands in the range 1981-1824 cm⁻¹ for their terminal carbonyls, whereas those of 3-6 each displayed one absorption band in the range 1678-1720 cm⁻¹ for their ketonic or ester carbonyls. In addition, the ¹H-NMR spectra of 2-8 exhibited their phenyl groups and substituted cyclopentadienyl ligands. For example, while product 2 showed two multiplets at 5.02-5.26 and 5.42-5.71 ppm for the H^2/H^5 protons close to the substituent and the H^{3}/H^{4} protons remote from the substituent, product 5 displayed two multiplets at 5.36-5.70 and 5.74-5.96 ppm for the H^3/H^4 and H^2/H^5 , respectively. Such an opposite assignment of the chemical shifts for H^2/H^5 and H^3/H^4 is apparently due to the different inductive effects of the substituents Me₃Si and MeO₂C in 2 and 5 [9].

It is worth pointing out that products 2-8 can not only be prepared by the solution reactions mentioned above, but can also be prepared by the corresponding solid state reactions without any solvent. For instance, while an equimolar mixture of $[(\eta^5-MeCOC_5H_4)_2-Mo_2(CO)_4]$ and Ph_2Te_2 was heated at 60°C for 3 h to give **3** in 88% yield, that of $[(\eta^5-RC_5H_4)_2W_2(CO)_4]$ (R = MeO_2C or EtO_2C) and Ph_2Te_2 under the same conditions afforded **5** and **6** in 84 and 81% yields, respectively. It follows that the solid state reactions, when compared with the solution reactions, might serve as a simpler and more convenient method for synthesizing the RTe bridged dinuclear complexes described above.

2.2. Crystal structures of 6 and 8

To confirm the two types of structures mentioned above, we carried out single crystal X-ray diffraction analyses for 6 and 8. The ORTEP drawings of 6 and 8 are shown in Figs. 1 and 2, whereas the selected bond lengths and angles of 6 and 8 are listed in Tables 1 and 2.

As seen from Fig. 1 the molecule of 6 contains a butterfly W1W2Te1Te2 skeleton. In addition, the W1 and W2 atoms each carry one substituted Cp ring and two terminal carbonyls *trans* to each other, whereas the Te1 and Te2 atoms are attached to two phenyl groups by an axial and an equatorial bond [10], respectively. In principle, bridged complexes with a general formula $[(\eta^{5}-RC_{5}H_{4})_{2}M_{2}(CO)_{4}(\mu-TePh)_{2}]$ (M = Mo, W) may have six isomers (namely, trans/ae, trans/ee, trans/aa, cis/ae, cis/ee and cis/aa; a = axial, e = equatorial), in terms of the *trans* or *cis* arrangements of either η^5 - RC_5H_4 or CO ligands with respect to the M···M vector and the ae, ee or aa orientations of the two Ph groups bonded to Te atoms with respect to the butterfly skeleton M_2Te_2 [10]. So, the X-ray diffraction analysis has revealed that $\mathbf{6}$ is one of the six isomers, i.e. the *trans*/ae isomer. It is worth noting that the dihedral angle between the two Cp planes C17-C21 and C25-C29 is calculated to be 47.63°, whereas that between the two benzene rings C5-C10 and C11-C16 is 82.97°. In the butterfly skeleton the bond lengths W1-Te1, W1–Te2, W2–Te1 and W2–Te2 (average 2.816(1) Å) and the bond angles Te1-W1-Te2 and Te1-W2-Te2 (average 71.145(2)°), and W1-Te1-W2and W1-Te2-W2 (average 97.62(2)°) are very close to each

other. The distance between W1 and W2 (5.279 Å) is greater than the sum of the van der Waals radii of two tungsten atoms [11], which implies that there are no

bonding interactions between W1 and W2. However, since the distance between Te1 and Te2 (2.81 Å) is much less than the sum of the van der Waals radii of

Fig. 1. ORTEP drawing of 6 with atom-labeling scheme.

Fig. 2. ORTEP drawing of 8 with atom-labeling scheme.

Table 1 Selected bond lengths (Å) and angles (°) for ${\bf 6}$

Bond lengths			
W(1)-Te(1)	2.817(1)	W(1)-Te(2)	2.819(1)
W(2)-Te(1)	2.795(1)	W(2)–Te(2)	2.833(1)
W(1)-C(17)	2.280(8)	Te(1)-C(5)	2.152(8)
W(2)-C(25)	2.371(9)	Te(2)-C(11)	2.138(8)
Bond angles			
W(1) - Te(1) - W(2)	98.08(2)	Te(1)-W(1)-Te(2)	71.09(2)
W(1)-Te(2)-W(1)	97.16(2)	Te(1)-W(2)-Te(2)	71.20(2)
W(1)-Te(1)-C(5)	110.0(2)	W(1)-Te(2)-C(11)	106.8(2)
Te(1)-W(1)-C(17)	144.5(2)	Te(1)-W(2)-C(25)	103.7(3)

Table 2 Selected bond lengths (Å) and angles (°) for **8**

2.9354(8)	Mo(2A)-Te(1A)	2.8035(8)
2.7232(7)	Mo(2A)-Te(2A)	2.7880(7)
2.7173(7)	Mo(2A)-Te(3A)	2.8305(7)
2.8344(7)		
64.144(19)	Mo(1A)-Te(2A)-	64.427(19)
	Mo(2A)	
62.418(18)	Te(1A)-Mo(1A)-	59.256(18)
	Mo(2A)	
56.619(18)	Te(3A)-Mo(1A)-	58.726(17)
	Mo(2A)	
78.46(2)	Te(2A)-Mo(2A)-	77.378(19)
	Te(3A)	
117.97(2)	Te(1A)-Mo(2A)-	113.00(2)
	Te(2A)	
	2.9354(8) 2.7232(7) 2.7173(7) 2.8344(7) 64.144(19) 62.418(18) 56.619(18) 78.46(2) 117.97(2)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

two tellurium atoms (4.4 Å) [11] and particularly less than the suggested value of 3.3 Å for possible interactions between Te atoms [12], we might suggest the existence of partial bonding interactions between Te1 and Te2 [12](the single bond length of Te–Te is 2.71 Å in a typical Te–Te containing compound Ph₂Te₂ [13]).

It is worth noting that although the structure of **6** is similar to those of its molybdenum analogs $[Cp_2Mo_2(CO)_4(\mu\text{-TePh})_2]$ (the Mo^{...}Mo distance is 4.23 Å and the Te^{...}Te distance is 3.24 Å) [7] and $[(\eta^5-MeO_2CC_5H_4)_2Mo_2(CO)_4$ ($\mu\text{-TePh})_2]$ (the Mo^{...}Mo distance is 4.259(3) Å and the Te^{...}Te distance is 3.32 Å) [8], complex **6** is the first example of such a butterfly W2Te2 complex to be synthesized and structurally characterized.

More interesting is the structure of the unprecedented type of complex **8** shown in Fig. 2. X-ray diffraction analysis shows that it contains two butterfly skeletons Mo(1A)Mo(2A)Te(1A)Te(3A) and Mo(1A)Mo(2A)Te(2A)Te(3A). The shared butterfly wing Mo(1A)Mo(2A)Te(2A)Te(3A) is almost perpendicular (92.2°) to the plane comprising Mo(1A), Te(1A), Mo(2A) and Te(2A).

While Mo(1A) carries one Me-substituted cyclopentadienvl and one terminal CO ligand, Mo(2A) carries three terminal CO ligands. In addition, the two phenyl groups attached to Te(1A) and Te(2A) are cis to each other with respect to the plane Mo(1A)Te(1A)Mo-(2A)Te(2A), whereas the phenyl group bonded to Te(3A) is in an equatorial position [10] in the first butterfly skeleton Mo(1A)Mo(2A)Te(1A)Te(3A) (note that in any two contiguous butterfly units if the Ph group attached to the Te atom of the common wing is equatorial in the first unit, then it will be axial in the second unit and vice versa [10]). So, although four isomers *cis*/e, *cis*/a, *trans*/e and *trans*/a are possible for 8 in terms of the *cis* or *trans* arrangements of the two Ph groups attached to Te(1A) and Te(2A) with respect to the plane mentioned above and the a or e orientations of the Ph group attached to Te(3A) in the first butterfly skeleton [10], the single crystal molecule of 8 has proved to be a *cis*/e isomer. However, the 1 H-NMR spectrum of 8 exhibited two singlets at 2.38 and 2.29 ppm in the ratio 3:2 for its Me substituent. So, this implies that 8 is originally a mixture of two isomers including *cis*/e and one of the other three in the ratio 3:2, and that the pure isomer cis/e was actually obtained during the single crystal growing process. The dihedral angles between the substituted Cp ring and the above-mentioned three Ph rings are 72.42, 83.92 and 88.95°, respectively. The bond lengths between Te(1A), Te(2A) or Te(3A) and Mo(1A) or Mo(2A) are within 2.7173(7) - 2.8344(7) Å, whereas the bond angles Mo(1A)-Te(1A)-Mo(2A), Mo(1A)-Te(2A)-Mo(2A)and Mo(1A)-Te(3A)-Mo(2A) are within 62.418(18)-64.427(19)°. The single bond length of Mo(1A)-Mo(2A) is 2.9354(8) Å, which is slightly longer than the corresponding one (2.714(6) A) in $[(\eta^{5}-MeO_{2}CC_{5}H_{4})_{2}Mo_{2}(\mu-Cl)(\mu-TePh)_{3}]$ [8], but very close to that (2.93 Å) in $[(\eta^7-C_7H_7)Mo_2(CO)_3(\mu-SBu (t)_3$ [14]. Fig. 3 is the unit cell plot of 8, from which it can be seen that each molecule of 8 carries one solvent molecule of acetone. This is in good agreement with its elemental analysis.

Finally, it should be noted that in contrast to **6**, since the distances of the two tellurium atoms $Te(1A)\cdots Te(3A)$ (3.38 Å) and $Te(2A)\cdots Te(3A)$ (3.51 Å) are greater than the suggested value of 3.3 Å for possible interactions between Te atoms [12], it seems likely that the partial bonding interactions between Te(3A) and Te(1A) or Te(2A) cannot exist.

3. Experimental

All the reactions were carried out under an atmosphere of prepurified nitrogen using standard Schlenk or vacuum-line techniques. Toluene was distilled from sodium-benzophenone ketyl under nitrogen. Ph_2Te_2 [15], [(η^5 -RC₅H₄)₂M₂(CO)₄] (M = Mo, W; R = H, Me, Me₃Si, MeCO, MeO₂C, EtO₂C) [7a,16–19] were prepared according to the methods in the literature. The products were separated by preparative TLC (glass plates, $20 \times 25 \times 0.25$ cm³; silica gel H, 10–40 µm). All samples for analyses were recrystallized in a mixed CH₂Cl₂-hexane solvent. IR spectra were recorded on a Nicolet FT-IR 5DX infrared spectrophotometer. ¹H-NMR spectra were recorded on a JEOL FX-90Q or a Bruker AC-P 200 NMR spectrometer. C/H analysis and melting point determination were performed on a Yanaco CHN Corder MT-3 analyzer and on a Yanaco Mp-500 apparatus, respectively.

3.1. Preparation of 1

A 100-ml three-necked flask fitted with a magnetic stir-bar, a rubber septum and a reflux condenser topped with a nitrogen inlet tube was charged with 0.434 g (1.0 mmol) of $[(\eta^5-C_5H_5)_2Mo_2(CO)_4]$ and 0.409 g (1.0 mmol) of Ph₂Te₂ in 40 ml of toluene. The mixture was refluxed for 6 h. The solvent was removed under reduced pressure. The residue was subjected to TLC separation using acetone–petroluem ether (v/v = 1:8) as the eluent. The main band afforded 0.582 g (69%) of **1** as a brown solid, which has been identified by comparison of its IR and ¹H-NMR spectra with those of an authentic sample [7a].

3.2. Preparation of 2

The same procedure as that for **1** was followed, but 0.578 g (1.0 mmol) of $[(\eta^5-Me_3SiC_5H_4)_2Mo_2(CO)_4]$ was used instead of $[(\eta^5-C_5H_5)_2Mo_2(CO)_4]$. The main band was eluted with acetone-petroleum ether (v/v = 1:5) to give 0.774 g (83%) of **2** as a brown solid. m.p. 75–77°C. Anal. Found: C, 38.99; H, 3.79. Calc. for $C_{32}H_{36}Mo_2O_4Si_2Te_2$: C, 38.91; H, 3.67%. IR (KBr disk, cm⁻¹): terminal C=O 1920s, 1925vs, 1852vs. ¹H-NMR (CHCl₃-d): $\delta = 0.13$ (s, 18H, 2Me₃Si), 5.02–5.26 (m, 4H, 2H², 2H⁵), 5.42–5.71 (m, 4H, 2H³, 2H⁴), 7.13–7.48 (m, 10H, 2C₆H₅).

3.3. Preparation of $\boldsymbol{3}$

1. Solution reaction method. The same procedure as that for 1 was followed, but 0.518 g (1.0 mmol) of $[(\eta^5-MeCOC_5H_4)_2Mo_2(CO)_4]$ was used instead of $[(\eta^5-C_5H_5)_2Mo_2(CO)_4]$. Using CH₂Cl₂ as eluent, the main band afforded 0.802 g (86%) of **3** as a brown solid. m.p. 158–159°C. Anal. Found: C, 38.56; H, 2.71. Calc. for C₃₀H₂₄Mo₂O₆Te₂: C, 38.85; H, 2.61%. IR (KBr disk, cm⁻¹): acetyl carbonyl C=O 1678s; terminal C=O 1954vs, 1932vs, 1905s, 1875vs, 1848vs. ¹H-NMR (CHCl₃-d): $\delta = 1.98$ (s, 6H, 2CH₃), 5.24–5.70 (m, 8H, 2C₅H₄), 6.72–7.52 (m, 10H, 2C₆H₅).

Fig. 3. The unit cell plot of 8.

2. Solid state reaction method. A 50-ml Schlenk flask was charged with 0.155 g (0.3 mmol) of $[(\eta^5-MeCOC_3H_4)_2Mo_2(CO)_4]$ and 0.123 g (0.3 mmol) of Ph₂Te₂. The finely powdered and uniformly mixed reaction mixture was heated at 60°C for 3 h. After TLC separation using CH₂Cl₂ as eluent, 0.245 g (88%) of **3** was obtained.

3.4. Preparation of 4

The same procedure as that for **1** was followed, but 0.694 g (1.0 mmol) of $[(\eta^5-MeCOC_5H_4)_2W_2(CO)_4]$ was used instead of $[(\eta^5-C_5H_5)_2Mo_2(CO)_4]$. Using CH₂Cl₂ as eluent, the main band afforded 0.870 g (79%) of **4** as a brown solid. m.p. 147–148°C. Anal. Found: C, 32.14; H 2.12. Calc. for $C_{30}H_{24}O_6Te_2W_2$: C, 32.66; H, 2.19%. IR (KBr disk, cm⁻¹): acetyl carbonyl C=O 1682s; terminal C=O 1927vs, 1859vs, 1835s. ¹H-NMR (CHCl₃-*d*): $\delta = 2.12$ (s, 6H, 2CH₃), 5.44–5.90 (m, 8H, 2C₅H₄), 7.04–7.60 (m, 10H, 2C₆H₅).

3.5. Preparation of 5

- 1. Solution reaction method. The same procedure as that for 1 was followed, but 0.725 g (1.0 mmol) of $[(\eta^5-MeO_2CC_5H_4)_2W_2(CO)_4]$ was used instead of $[(\eta^5-C_5H_5)_2Mo_2(CO)_4]$. Using CH₂Cl₂ as eluent, the main band gave 0.929 g (82%) of **5** as a brown solid. m.p. 139–141°C. Anal. Found: C, 31.89; H, 2.12. Calc. for C₃₀H₂₄O₈Te₂W₂: C, 31.74; H, 2.13%. IR (KBr disk, cm⁻¹): ester carbonyl C=O 1720s; terminal C=O 1956vs, 1919vs, 1894vs, 1865s, 1824s. ¹H-NMR (CHCl₃-d): $\delta = 3.73$ (s, 6H, 2CH₃), 5.36–5.70 (m, 4H, 2H³, 2H⁴), 5.74–5.96 (m, 4H, 2H², 2H⁵), 7.00–7.64 (m, 10H, 2C₆H₅).
- 2. Solid state reaction method. A 50-ml Schlenk flask was charged with 0.218 g (0.3 mmol) of $[(\eta^5 MeO_2CC_5H_4)_2W_2(CO)_4]$ and 0.123 g (0.3 mmol) of Ph₂Te₂. The finely powdered and uniformly mixed reaction mixture was heated at 60°C for 3 h. After TLC separation using CH₂Cl₂ as eluent, 0.285 g (84%) of **5** was obtained.

3.6. Preparation of 6

1. Solution reaction method. The same procedure as that for 1 was followed, but 0.754 g (1.0 mmol) of $[(\eta^5-\text{EtO}_2\text{CC}_5\text{H}_4)_2\text{W}_2(\text{CO})_4]$ was used instead of $[(\eta^5-\text{C}_5\text{H}_5)_2\text{Mo}_2(\text{CO})_4]$. Using CH₂Cl₂ as eluent, the main band afforded 0.898 g (77%) of **6** as a brown solid. m.p. 154–156°C. Anal. Found: C, 32.96; H, 2.50. Calc. for C₃₂H₂₈O₈Te₂W₂: C, 33.04; H, 2.43%. IR (KBr disk, cm⁻¹): ester carbonyl C=O 1713vs; terminal C=O 1948vs, 1919vs, 1890vs, 1871s, 1828vs. ¹H-NMR (CHCl₃-d): $\delta = 1.26$ (t, J = 7.2 Hz, 6H,

2CH₃), 4.22 (q, J = 7.2 Hz, 4H, 2CH₂), 5.40–5.70 (m, 4H, 2H³, 2H⁴), 5.74–5.94 (m, 4H, 2H², 2H⁵), 7.08–7.62 (m, 10H, 2C₆H₅).

2. Solid state reaction method. A 50-ml Schlenk flask was charged with 0.226 g (0.3 mmol) of $[(\eta^5 - \text{EtO}_2\text{CC}_5\text{H}_4)_2\text{W}_2(\text{CO})_4]$ and 0.123 g (0.3 mmol) of Ph₂Te₂. The finely powdered and uniformly mixed reaction mixture was heated at 60°C for 3 h. After TLC separation using CH₂Cl₂ as eluent, 0.282 g (81%) of **6** was obtained.

3.7. Preparation of 7 and 8

The same procedure as that for **1** was followed, but 0.462 g (1.0 mmol) of $[(\eta^5-MeC_5H_4)_2Mo_2(CO)_4]$ was used instead of $[(C_5H_5)_2Mo_2(CO)_4]$. Using acetonepetroleum ether (v/v = 1:5) as eluent, from the first main band 0.276 g (34%) of 7 was obtained as a brown solid. m.p. 135-137°C. Anal. Found: C, 38.54; H, 2.72. Calc. for C₂₈H₂₄Mo₂O₄Te₂: C, 38.29; H, 2.97%. IR (KBr disk, cm⁻¹): terminal C=O 1943s, 1916vs, 1846vs, 1829s. ¹H-NMR (CHCl₃-d): $\delta = 1.96$ (s, 6H, 2CH₃), 5.02-5.32 (m, 8H, 2C₅H₄), 7.12-7.50 (m, 10H, 2C₆H₅). The second main band afforded 0.196 g (24%) of 8 as a green solid. m.p. 178-180°C. Anal. Found: C, 33.76; H, 2.03. Calc. for C₃₁H₂₈Mo₂O₅Te₃: C, 33.72; H, 2.22%. IR (KBr disk, cm⁻¹): terminal C=O 1981vs, 1955vs, 1920s, 1861s. ¹H-NMR (CHCl₃-*d*): $\delta = 2.29$, 2.38 (s,s, 3H, CH₃), 5.34-5.68 (m, 4H, C₅H₄), 6.96-7.42 (m, 15H, $3C_6H_5$). Crystal growing of 8 in acetonehexane (v/v = 1:3) gave 8 with one molecule of acetone, as a green crystal. Anal. Found: C, 35.01; H, 2.91. Calc. for C₃₁H₂₈Mo₂O₅Te₃·C₂H₆O: C, 35.28; H, 2.67%.

3.8. X-ray structure determination of 6

Single crystals of **6** suitable for X-ray diffraction analysis were grown by slow evaporation of its CH₂Cl₂-hexane (v/v = 1:2) solution at about 5°C. The single crystal of **6** (0.2 × 0.2 × 0.3 mm³) was glued to a glass fiber and mounted on a Rigaku ACF 7R diffractometer. Data were collected at room temperature, using graphite-monochromated Mo-K_{α} radiation (λ = 0.71069 Å). A total of 4397 independent reflections were collected at 20°C by the ω -2 θ scan mode, of which 3923 independent reflections with $I \ge 3\sigma(I)$ were considered to be observed and used in subsequent refinement. The data were corrected for Lorentz polarization factors and empirical absorption. Crystallographic data are listed in Table 3.

3.9. X-ray structure determination of 8

Single crystals of **8** suitable for X-ray diffraction analysis were grown by slow evaporation of its acetone-hexane (v/v = 1:3) solution at about 5°C. The

Table 3								
Crystal	data	and	structure	refinements	for	6	and	8

	6	8
Empirical formula	C ₃₂ H ₃₀ O ₉ Te ₂ W ₂	C ₃₁ H ₂₈ Mo ₂ O ₅ Te ₃
Formula weight	1181.48	1055.21
Temperature (K)	293(2)	298(2)
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> 1 (# 2)	$P\overline{1}$
a (Å)	12.278(5)	10.5927(7)
b (Å)	13.115(5)	15.6762(10)
<i>C</i> (Å)	11.708(4)	20.4673(13)
α (°)	97.55(3)	89.2850(10)
β (°)	101.60(3)	87.3820(10)
γ (°)	71.16(3)	80.2460(10)
V (Å ³)	1743(1)	3346.0(4)
Ζ	2	4
$D_{\rm c} ({\rm g} {\rm cm}^{-3})$	2.251	2.095
Scan type	$\omega - 2\theta$	$\omega - 2\theta$
Absorption coefficient (mm ⁻¹)	8.291	3.349
F(000)	1092	1976
Reflections collected	4656	13968
Independent reflections	4397	11756
	$[R_{\rm int} = 0.067]$	$[R_{\rm int} = 0.0368]$
Goodness-of-fit on F^2	1.56	1.049
Final R indices $[I > 2\sigma(I)]$		$R_1 = 0.0387,$
		$wR_2 = 0.0950$
R indices (all data)		$R_1 = 0.0545,$
		$wR_2 = 0.1055$
R	0.025	
$R_{ m w}$	0.036	
Largest difference peak and hole (e $Å^{-3}$)	0.86 and -0.73	1.110 and -0.849

single crystal of **8** (0.52 × 0.19 × 0.09 mm³) was glued to a glass fiber and mounted on a Bruker Smart 1000 automated diffractometer. Data were collected at 25°C, using graphite-monochromated Mo–K_{α} radiation ($\lambda =$ 0.71073 Å) in the ω -2 θ scan mode. The structure was solved by direct methods and refined by the full-matrix least-squares techniques (SHELXL-97) on F^2 . Hydrogen atoms were located by using the geometric method. The crystal data and structural refinement details are summarized in Table 3.

4. Supplementary material

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Center, CCDC nos. 152543 for **6** and 152544 for **8**. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We are grateful to the National Natural Science Foundation of China and the State Key Laboratory of Structural Chemistry for financial support of this work.

References

- [1] M.D. Curtis, Polyhedron 6 (1987) 759.
- [2] L.-C. Song, J.-Q. Wang, Youji Huaxue 14 (1994) 225.
- [3] P. Mathur, Md. M. Hossain, A.L. Rheingold, Organometallics 13 (1994) 3909.
- [4] P. Schollhammer, F.Y. Petillon, R. Pichon, S. Poder-Guillou, J. Talarmin, K.W. Muir, L. Manojlovic-Muir, Organometallics 14 (1995) 2277.
- [5] H. Rakoczy, M. Schollenberger, B. Nuber, M.L. Ziegler, J. Organomet. Chem. 467 (1994) 217.
- [6] V. Riera, M.A. Ruiz, F. Villafane, Organometallics 11 (1992) 2854.
- [7] (a) P. Jaitner, W. Wohlgenannt, Inorg. Chim. Acta 101 (1985)
 L43. (b) P. Jaitner, W. Wohlgenannt, A. Gieren, H. Betz, T. Hübner, J. Organomet. Chem. 297 (1985) 281.
- [8] L.-C. Song, Y.-C. Shi, W.-F. Zhu, Q.-M. Hu, X.-Y. Huang, F. Du, X.-A. Mao, Organometallics 19 (2000) 156.
- [9] L.-C. Song, J.-Y. Shen, Q.-M. Hu, R.-J. Wang, H.-G. Wang, Organometallics 12 (1993) 408.
- [10] A. Shaver, B.S. Lum, P. Bird, E. Livingstone, M. Schweitzer, Inorg. Chem. 29 (1990) 1832.
- [11] L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY, 1960, p. 260.
- [12] B.K. Das, M.G. Kanatzidis, J. Organomet. Chem. 513 (1996) 1.
- [13] G. Liabres, O. Dideberg, L. Dupont, Acta Crystallogr. B 28 (1972) 2438.
- [14] D. Mohr, H. Wienand, M.L. Ziegler, J. Organomet. Chem. 134 (1977) 281.
- [15] W.S. Haller, K.J. Irgolic, J. Organomet. Chem. 38 (1972) 97.
- [16] H. Alper, F.W.B. Einstein, F.W. Hartstock, R.E. Jones, Organometallics 6 (1987) 829.
- [17] L.-C. Song, J.-Y. Shen, J.-Q. Wang, Q.-M. Hu, R.-J. Wang, H.-G. Wang, Polyhedron 13 (1994) 3235.
- [18] L.-C. Song, J.-Y. Shen, Q.-M. Hu, R.-J. Wang, H.-G. Wang, Organometallics 12 (1993) 408.
- [19] L.-C. Song, J.-Q. Wang, W.-J. Zhao, Q.-M. Hu, Y.-Q. Fang, S.-J. Zhang, R.-J. Wang, H.-G. Wang, J. Organomet. Chem. 453 (1993) 105.